Chapter 3 Calculations with Chemical Formulas and Equations

(Sections 3.1, 3.2, 4.3, and 4.4 in OpenStax)
Molar Masses (MM) and Avogadro's Number

- Molecular Mass or Weight (MM or MW) is the sum of the atomic
masses for all of the atoms in a molecular compound, such as $\mathrm{H}_{2} \mathrm{O}$.
- Formula Mass or Weight (FM or FW) is similar, but the sum uses the formula unit of a non-molecular (ionic) compound, such as NaCl .
- A mole is the quantity of atoms in exactly 12 g of ${ }^{12} \mathrm{C}$, which is Avogadro's number.

Avogadro's number: $\quad \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \frac{\mathrm{amu}}{\mathrm{g}}$ (or $\frac{\text { molecules }}{\text { mole }}$)
This quantity represents a mole for all atoms, molecules, and formula units.

- $\quad \mathrm{N}_{\mathrm{A}}$ allows us to convert between amu and g so that

Molar Mass in $\left(\frac{\mathrm{g}}{\text { mole }}\right)=$ Molar Mass in $\left(\frac{\mathrm{amu}}{\text { atom }}\right)$

Ex 3.01 Determine the Molar Mass of a Molecular Compound $\left(\mathrm{H}_{2} \mathrm{O}\right)$

$$
\left(\frac{2 \mathrm{H} \text { atoms }}{1 \mathrm{H}_{2} \mathrm{O} \text { molecule }} \times 1.01 \frac{\mathrm{amu}}{\mathrm{H} \text { atom }}\right)+\left(\frac{1 \mathrm{O} \text { atom }}{1 \mathrm{H}_{2} \mathrm{O} \text { molecule }} \times 16.00 \frac{\mathrm{amu}}{\mathrm{O} \text { atom }}\right)=18.02 \frac{\mathrm{amu}}{\mathrm{H}_{2} \mathrm{O} \text { molecule }}\left(\text { or } \frac{\mathrm{g}}{\text { mole }}\right)
$$

Ex 3.02 Determine the Molar Mass of a Nonmolecular Compound (NaCl)
$\left(\frac{1 \mathrm{Na} \text { atom }}{1 \mathrm{NaCl} \text { unit }} \times 22.99 \frac{\mathrm{amu}}{\mathrm{Na} \text { atom }}\right)+\left(\frac{1 \mathrm{Cl} \text { atom }}{1 \mathrm{NaCl} \text { unit }} \times 35.45 \frac{\mathrm{amu}}{\mathrm{Cl} \text { atom }}\right)=58.44 \frac{\mathrm{amu}}{\mathrm{NaCl} \text { unit }}\left(\right.$ or $\left.\frac{\mathrm{g}}{\mathrm{mole}}\right)$

Ex 3.03 Determine the Mass of one Sodium (Na) atom using N_{A} as a Conversion Factor

$$
\left(\frac{22.99 \mathrm{~g}}{1 \mathrm{~mole} \mathrm{Na}}\right) \times\left(\frac{1 \mathrm{~mole} \mathrm{Na}}{6.022 \times 10^{23} \mathrm{Na} \text { atoms }}\right)=3.818 \times 10^{-23} \frac{\mathrm{~g}}{\mathrm{Na} \text { atom }}
$$

Ex 3.04 Convert 0.0524 moles of iron(III) bromide into grams

- The molar mass of FeBr_{3} is

$$
\left(\frac{1 \text { mole Fe }}{1 \mathrm{~mole} \mathrm{FeBr}_{3}} \times 55.85 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{Fe}}\right)+\left(\frac{3 \text { moles } \mathrm{Br}}{1 \mathrm{~mole} \mathrm{FeBr}_{3}} \times 79.90 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{Br}}\right)=295.55 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{FeBr}_{3}}
$$

- The mass of FeBr_{3} is $0.0524 \mathrm{~mol} \mathrm{FeBr} 3 \times\left(\frac{295.55 \mathrm{~g}}{1 \mathrm{~mole} \mathrm{FeBr}_{3}}\right)=15.5 \mathrm{~g}$

Ex 3.05 Convert 25.4 grams of iron(II) sulfate into moles

- The molar mass of FeSO_{4} is $1(\mathrm{Fe})+1(\mathrm{~S})+4(\mathrm{O})=55.85+32.07+4(16.00)=151.92 \mathrm{~g} / \mathrm{mol}$
- The number of moles is $25.4 \mathrm{~g} \times\left(\frac{1 \mathrm{~mol}}{151.92 \mathrm{~g}}\right)=0.167 \mathrm{~mol}$

Ex 3.06 Determine the number of Chlorine $\left(\mathrm{Cl}_{2}\right)$ molecules using N_{A} as a Conversion Factor

- The molar mass of Cl_{2} is $\frac{2 \text { moles Cl }}{1 \text { mole Cl }_{2}} \times 35.45 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{Cl}}=70.90 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{Cl}_{2}}$
- $\quad\left(100.0 \mathrm{~g}\right.$ of $\left.\mathrm{Cl}_{2}\right) \times\left(\frac{1 \mathrm{~mole} \mathrm{Cl}_{2}}{70.90 \mathrm{~g}}\right) \times\left(\frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mole}}\right)=8.49 \times 10^{23}$ molecules of Cl_{2}

Mass Percentages of Elements in a Compound

- Mass \% of a component $=\left[\frac{\text { mass of component in compound }}{\text { total mass of compound }}\right] \times 100 \%$

Ex 3.07 Find the Mass \%'s of carbon, hydrogen, and oxygen in formaldehyde

- The molar mass of $\mathrm{CH}_{2} \mathrm{O}$ is $12.01+2(1.01)+16.00=30.03 \mathrm{~g} / \mathrm{mol}$
- The component masses in one mole of $\mathrm{CH}_{2} \mathrm{O}$ are:

$$
\begin{aligned}
& \mathrm{C}=\left(\frac{1 \mathrm{~mole} \mathrm{C}}{1 \text { mole } \mathrm{CH}_{2} \mathrm{O}}\right) \times\left(\frac{12.01 \mathrm{~g} \mathrm{of} \mathrm{C}}{1 \mathrm{~mole} \mathrm{C}}\right)=12.01 \frac{\mathrm{~g} \mathrm{of} \mathrm{C}}{1 \mathrm{~mole} \mathrm{CH}_{2} \mathrm{O}} \\
& \mathrm{H}=\left(\frac{2 \text { mole } \mathrm{H}}{1 \text { mole } \mathrm{CH}_{2} \mathrm{O}}\right) \times\left(\frac{1.01 \mathrm{~g} \text { of } \mathrm{H}}{1 \text { mole } \mathrm{H}}\right)=2.02 \frac{\mathrm{~g} \text { of } \mathrm{H}}{1 \mathrm{~mole} \mathrm{CH}_{2} \mathrm{O}} \\
& \mathrm{O}=\left(\frac{1 \text { mole } \mathrm{O}}{1 \mathrm{~mole} \mathrm{CH}_{2} \mathrm{O}}\right) \times\left(\frac{16.00 \mathrm{~g} \mathrm{of} \mathrm{O}}{1 \text { mole O }}\right)=16.00 \frac{\mathrm{~g} \mathrm{of} \mathrm{O}}{1 \mathrm{~mole} \mathrm{CH}_{2} \mathrm{O}}
\end{aligned}
$$

- Divide the component mass of each element by the molar mass of the compound.

$$
\begin{aligned}
& \% \mathrm{C}=\frac{12.01 \mathrm{~g} \mathrm{of} \mathrm{C}^{30.03 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}} \times 100 \%=40.0 \%}{\% \mathrm{H}=\frac{2.02 \mathrm{gof} \mathrm{H}}{30.03 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}} \times 100 \%=6.7 \%} \\
& \% \mathrm{O}=\frac{16.00 \mathrm{~g} \mathrm{of} \mathrm{O}^{30.03 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}} \times 100 \%=53.3 \%}{}
\end{aligned}
$$

- This means 100.0 g of $\mathrm{CH}_{2} \mathrm{O}$ will contain 40.0 g of C, 6.7 g of H , and 53.3 g of O .

Ex 3.08 Determine the mass of C in a 124.5 g sample of $\mathrm{CH}_{2} \mathrm{O}$
$\left(124.5 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}\right) \times\left(\frac{40.0 \mathrm{~g} \text { of C }}{100.0 \mathrm{~g} \text { of CH2O }}\right)=49.8 \mathrm{~g}$ of C

Total Carbon and Hydrogen Analysis (See Figure)

- $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}} \mathrm{O}_{\mathrm{q}}$ is combusted with O_{2} to create nCO_{2} and $\left(\frac{\mathrm{m}}{2}\right) \mathrm{H}_{2} \mathrm{O}$
- Masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ created are converted into masses of C and H with a similar method to examples 3.07 and 3.08 by using mass ratios: $\left(\frac{12.0 \mathrm{~g} \mathrm{C}}{44.0 \mathrm{~g} \mathrm{CO2}}\right)$ and $\left(\frac{2.02 \mathrm{~g} \mathrm{H}}{18.02 \mathrm{~g} \mathrm{H2O}}\right)$
- After subtracting masses of C and H from the sample mass, the remaining mass, if any, in the sample is due to O .
- The masses of C, H, and O are each divided by the overall sample mass to find the mass \%'s in the sample.
- The elements' mass \%'s are divided by their atomic masses to convert them into moles for each element. The moles can then be used those to find the compound's empirical formula.

Empirical Formula

- Written with the smallest possible set of integer subscripts.
- Same as formula unit for most ionic compounds (except those with $\mathrm{Hg}_{2}{ }^{+2}$).
- But is not necessarily same as formula for molecular compounds.
- $\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene) and $\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene) both have the same empirical formula: CH .

Ex 3.10 Determine the Empirical Formula from the Element Masses

- 1.127 g of a nitrogen oxide has 0.343 g N and 0.784 g O
- $(0.343 \mathrm{~g} \mathrm{~N}) \times\left(\frac{1 \mathrm{~mole} \mathrm{~N}}{14.0 \mathrm{~g}}\right)=0.0245 \mathrm{~mol} \mathrm{~N} \quad(0.784 \mathrm{~g} \mathrm{O}) \times\left(\frac{1 \mathrm{~mole} \mathrm{O}}{16.0 \mathrm{~g}}\right)=0.0490 \mathrm{~mol} \mathrm{O}$
- $\frac{\text { moles } \mathrm{O}}{\text { moles } \mathrm{N}}=\frac{0.0490}{0.0245}=2.00 \mathrm{~mol} \mathrm{O}$ per mol N
- The empirical formula is NO_{2}. So, the compound can be NO_{2} or $\mathrm{N}_{2} \mathrm{O}_{4}$.

Ex 3.11 Determine the Empirical Formula from the Element Mass Percentages

- Potassium dichromate is $26.6 \% \mathrm{~K}, 35.3 \% \mathrm{Cr}$, and $38.1 \% \mathrm{O}$ by mass.
- That means 100.0 g potassium dichromate has $26.6 \mathrm{~g} \mathrm{~K}, 35.3 \mathrm{~g} \mathrm{Cr}$, and 38.1 g O
- $(26.6 \mathrm{~g} \mathrm{~K}) \times\left(\frac{1 \mathrm{~mol} \mathrm{~K}}{39.1 \mathrm{~g}}\right)=0.680 \mathrm{~mol} \mathrm{~K} \quad \frac{0.680}{0.680}=1.000$
$-\quad(35.3 \mathrm{~g} \mathrm{Cr}) \times\left(\frac{1 \mathrm{~mol} \mathrm{Cr}}{52.0 \mathrm{~g}}\right)=0.679 \mathrm{~mol} \mathrm{Cr} \quad \frac{0.679}{0.680}=0.999 \approx 1$
- $(38.1 \mathrm{~g} \mathrm{O}) \times\left(\frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g}}\right)=2.38 \mathrm{~mol} \mathrm{O} \quad \frac{2.38}{0.680}=3.50$
- Double those numbers to get all integer values: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Relating empirical formula mass to molecular mass

- For molecular compounds, MM is an integer multiple of empirical formula mass
- $\mathrm{n}=\frac{\text { molecular mass }}{\text { empirical formula mass }}$

Ex 3.12 Determine the Molecular Formula from the Molar Mass and the Empirical Formula

- Acetic acid's element mass \%'s are $39.9 \% \mathrm{C}, 6.7 \% \mathrm{H}$, and $53.4 \% \mathrm{O}$.
- The moles of C, H, and O in 100 g of acetic acid as follows:

$$
\begin{aligned}
& (39.9 \mathrm{~g} \mathrm{C}) \times\left(\frac{1 \mathrm{~mole} \mathrm{C}}{12.0 \mathrm{~g}}\right)=3.33 \text { moles } \mathrm{C} \\
& (6.7 \mathrm{~g} \mathrm{H}) \times\left(\frac{1 \mathrm{~mole} \mathrm{H}}{1.01 \mathrm{~g}}\right)=6.6 \text { moles } \mathrm{H} \\
& (53.4 \mathrm{~g} \mathrm{O}) \times\left(\frac{1 \mathrm{~mole} \mathrm{O}}{16.0 \mathrm{~g}}\right)=3.34 \text { moles } \mathrm{O}
\end{aligned}
$$

- Divide those results by 3.33 to get the empirical formula, which is $\mathrm{CH}_{2} \mathrm{O}$.
- The empirical formula mass of $\mathrm{CH}_{2} \mathrm{O}=12.01+2(1.01)+16.00=30.03 \mathrm{~g} / \mathrm{mol}$
- The molar mass of acetic acid can be determined with a mass spectrometer.

$$
\mathrm{MM}=60.06 \mathrm{~g} / \mathrm{mol}=(\mathrm{n})(30.03 \mathrm{~g} / \mathrm{mol}) \quad \text { and } \quad \mathrm{n}=2
$$

- The actual molecular formula is $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ (or $\left.\mathrm{CH}_{3} \mathrm{COOH}\right)$.

Stoichiometry

- Stoichiometry is the calculation of quantities of reactants and products involved in a chemical reaction.
- The reaction equation can use either molecules or moles as units.

The ratios for the substances are the same, regardless of which units are used.
1 molecule $\mathrm{N}_{2}+3$ molecules $\mathrm{H}_{2} \rightarrow 2$ molecules NH_{3}
or 1 mole $\mathrm{N}_{2}+3$ moles $\mathrm{H}_{2} \quad \rightarrow 2$ moles NH_{3}

- If the equation is in moles, then we can convert the moles into masses.
$\left(1 \mathrm{~mole}_{2}\right) \times(28.0 \mathrm{~g} / \mathrm{mol})=28.0 \mathrm{~g} \mathrm{~N}_{2}$
$\left(3\right.$ moles $\left.\mathrm{H}_{2}\right) \times(2.02 \mathrm{~g} / \mathrm{mol})=6.06 \mathrm{~g} \mathrm{H}_{2}$
$\left(2\right.$ moles $\left.\mathrm{NH}_{3}\right) \times(17.03 \mathrm{~g} / \mathrm{mol})=34.06 \mathrm{~g} \mathrm{NH}_{3}$
- Moles are proportional to stoichiometric coefficients. So, we can use the coefficients to create a conversion factor, and then find the amount of H_{2} needed to create $4.20 \mathrm{~mol} \mathrm{NH}_{3}$.
$\left(4.20 \mathrm{~mol} \mathrm{NH}_{3}\right.$ created) $\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}\right)=6.30$ moles H_{2} needed
- We can find the mass of H_{2} needed to create 1 metric ton ($1000 \mathrm{~kg} \mathrm{)} \mathrm{of} \mathrm{NH}_{3}$ by using that same conversion factor along with conversions between moles and masses.
First, convert to moles of $\mathrm{NH}_{3}: \quad(1000 \mathrm{~kg})\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.0 \mathrm{~g}}\right)=5.88 \times 10^{4}$ moles NH_{3}
Then, find the moles of H_{2} : $\quad\left(5.88 \times 10^{4}\right.$ moles $\left.\mathrm{NH}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{H}_{3}}\right)=8.82 \times 10^{4}$ moles H_{2}
Finally, convert to mass of $\mathrm{H}_{2}: \quad\left(8.82 \times 10^{4}\right.$ moles $\left.\mathrm{H}_{2}\right)\left(\frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{\mathrm{~mol}}\right)=1.78 \times 10^{5} \mathrm{~g} \mathrm{H}_{2}$
$1.78 \times 10^{5} \mathrm{~g} \mathrm{H}_{2} \times\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=178 \mathrm{~kg} \mathrm{H}_{2}$
Ex 3.13 Use Stoichiometry to Determine the Mass of Al Product
- In the Hall-Héroult process, aluminum is created from aluminum oxide and carbon.

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{C}_{(\mathrm{s})} \rightarrow 4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}
$$

- Mole ratios can be used to determine the Al mass that can be created from 1000 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
- Convert mass of reactant into moles: $\quad\left(1000 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{101.96 \mathrm{~g}}\right)=9.808$ moles $\mathrm{Al}_{2} \mathrm{O}_{3}$
- Convert to moles of product:

- Convert moles of product into mass:

$$
(19.62 \mathrm{~mol} \mathrm{Al})\left(\frac{26.98 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Al}}\right)=529.3 \mathrm{~g} \mathrm{Al}
$$

Limiting Reactant

- A substance that will be entirely consumed by a complete reaction is limiting.
- A substance that cannot be entirely consumed by a complete reaction is present in excess.
- The maximum moles of product possible are determined by the starting moles of the limiting reactant.

Ex 3.15 Finding the Amount of H_{2} Product Possible from the Limiting Reactant

- $\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
- Suppose we have 0.640 mol Mg and 0.820 mol HCl .
- $\quad(0.640 \mathrm{~mol} \mathrm{Mg}) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Zn}}\right)=0.640 \mathrm{~mol} \mathrm{H}_{2}$
- $\quad(0.820 \mathrm{~mol} \mathrm{HCl}) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{HCl}}\right)=0.410 \mathrm{~mol} \mathrm{H}_{2}$
- HCl is the limiting reactant because it makes the lesser amount of H_{2}.

Only 0.410 moles of H_{2} are produced when the reaction is complete.

- Once 0.410 moles of H_{2} are created, there will be no HCl left, and the reaction stops.
- Some excess Mg will remain present after the HCl is consumed and the reaction stopped.
- The mass of H_{2} produced in a complete reaction is $\left(0.410 \mathrm{~mol} \mathrm{H}_{2}\right)(2.02 \mathrm{~g} / \mathrm{mol})=0.828 \mathrm{~g}$

Theoretical Yield

- The theoretical yield is the maximum amount of product that can be obtained from a complete reaction.
- It is the maximum amount of product produced when the limiting reactant has been completely consumed.
- In Ex 3.15 above, the theoretical yield of H_{2} is 0.410 mol or 0.828 g .

Actual Yield

- The actual yield is usually less than the theoretical yield for several reasons.
- Products or reactants can escape or be lost.
- Other competing reactions can deplete reactants.
- Reactions typically stop before 100% completion.

Percent Yield

- Percent Yield $=\left[\frac{(\text { Actual Yield })}{(\text { Theoretical Yield })}\right] \times 100 \%$
- Suppose the theoretical yield is $0.828 \mathrm{~g}(0.410 \mathrm{~mol})$ of H_{2}, and the actual yield is 0.722 g .

Percent yield $=\left(\frac{0.722 \mathrm{~g} \text { actual }}{0.828 \mathrm{~g} \text { theoretical }}\right) \times 100 \%=87.2 \%$.

- The same value will be found if the units are in moles instead of g (because units cancel).

$$
\begin{aligned}
& (0.722 \mathrm{~g}) \times\left(\frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2.02 \mathrm{~g}}\right)=0.35 \underline{7} \text { moles } \mathrm{H}_{2} \\
& \text { Percent Yield }=\left(\frac{0.3574 \text { moles actual }}{0.410 \text { moles theoretical }}\right) \times 100 \%=87.2 \%
\end{aligned}
$$

